Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
169 result(s) for "Baker, Anthony E"
Sort by:
An Examination of Social-learning Outcomes in Three Entrepreneurial Chesapeake Bay Watermen Communities
Since the enactment of the Magnuson-Stevenson Fisheries Act in 1976, this federal law has expanded to regulate what was once a common shared resource of U.S. commercial fishing communities. A fisheries management method used in recent years has forced a large percentage of commercial fishermen from their traditional livelihoods through state and federal regulations. This action requires other agencies to manage the aftermath of dislocated families and job loss. Evidence shows that many commercial fishermen are unable to adapt to these regulatory changes, even if they have the explicit knowledge, skills, and abilities to do so. The conceptual framework for this work is based on studies that describe the drivers and outcomes of a social learning process for commercial fishermen. While this is true, no one study has focused exclusively on social learning outcomes. This case study used a purposeful sampling of multiple data types from archival, artifactual, and participant sources to examine the phenomena of social-learning and its effects on the learning outcomes of self-efficacy, self-concept and self-worth within three Chesapeake Bay watermen communities. A multiple technique approach that utilized aspects of phenomenology from an etic perspective, aspects of ethnography from a emic perspective and aspects of a case study from a historical perspective within constant comparative analytical model was employed. What was discovered from this approach was a unique culture, which had embedded within it a social learning process that resulted in both tacit and explicit learning outcomes, which were intertwined to such an extent they could not be separated. By using the knowledge developed, learning managers will have the ability to develop differentiated instruction to meet the specific learning needs of watermen, which can mitigate the adverse effects of regulations.
The impact of diabetes on tuberculosis treatment outcomes: a systematic review
Multiple studies of tuberculosis treatment have indicated that patients with diabetes mellitus may experience poor outcomes.We performed a systematic review and meta-analysis to quantitatively summarize evidence for the impact of diabetes on tuberculosis outcomes. We searched PubMed, EMBASE and the World Health Organization Regional Indexes from 1 January 1980 to 31 December 2010 and references of relevant articles for reports of observational studies that included people with diabetes treated for tuberculosis. We reviewed the full text of 742 papers and included 33 studies of which 9 reported culture conversion at two to three months, 12 reported the combined outcome of failure and death, 23 reported death, 4 reported death adjusted for age and other potential confounding factors, 5 reported relapse, and 4 reported drug resistant recurrent tuberculosis. Diabetes is associated with an increased risk of failure and death during tuberculosis treatment. Patients with diabetes have a risk ratio (RR) for the combined outcome of failure and death of 1.69 (95% CI, 1.36 to 2.12). The RR of death during tuberculosis treatment among the 23 unadjusted studies is 1.89 (95% CI, 1.52 to 2.36), and this increased to an effect estimate of 4.95 (95% CI, 2.69 to 9.10) among the 4 studies that adjusted for age and other potential confounding factors. Diabetes is also associated with an increased risk of relapse (RR, 3.89; 95% CI, 2.43 to 6.23). We did not find evidence for an increased risk of tuberculosis recurrence with drug resistant strains among people with diabetes. The studies assessing sputum culture conversion after two to three months of tuberculosis therapy were heterogeneous with relative risks that ranged from 0.79 to 3.25. Diabetes increases the risk of failure and death combined, death, and relapse among patients with tuberculosis. This study highlights a need for increased attention to treatment of tuberculosis in people with diabetes, which may include testing for suspected diabetes, improved glucose control, and increased clinical and therapeutic monitoring.
Maternal nutrition at conception modulates DNA methylation of human metastable epialleles
In experimental animals, maternal diet during the periconceptional period influences the establishment of DNA methylation at metastable epialleles in the offspring, with permanent phenotypic consequences. Pronounced naturally occurring seasonal differences in the diet of rural Gambian women allowed us to test this in humans. We show that significant seasonal variations in methyl-donor nutrient intake of mothers around the time of conception influence 13 relevant plasma biomarkers. The level of several of these maternal biomarkers predicts increased/decreased methylation at metastable epialleles in DNA extracted from lymphocytes and hair follicles in infants postnatally. Our results demonstrate that maternal nutritional status during early pregnancy causes persistent and systemic epigenetic changes at human metastable epialleles.
Global conservation outcomes depend on marine protected areas with five key features
In line with global targets agreed under the Convention on Biological Diversity, the number of marine protected areas (MPAs) is increasing rapidly, yet socio-economic benefits generated by MPAs remain difficult to predict and under debate. MPAs often fail to reach their full potential as a consequence of factors such as illegal harvesting, regulations that legally allow detrimental harvesting, or emigration of animals outside boundaries because of continuous habitat or inadequate size of reserve. Here we show that the conservation benefits of 87 MPAs investigated worldwide increase exponentially with the accumulation of five key features: no take, well enforced, old (>10 years), large (>100 km(2)), and isolated by deep water or sand. Using effective MPAs with four or five key features as an unfished standard, comparisons of underwater survey data from effective MPAs with predictions based on survey data from fished coasts indicate that total fish biomass has declined about two-thirds from historical baselines as a result of fishing. Effective MPAs also had twice as many large (>250 mm total length) fish species per transect, five times more large fish biomass, and fourteen times more shark biomass than fished areas. Most (59%) of the MPAs studied had only one or two key features and were not ecologically distinguishable from fished sites. Our results show that global conservation targets based on area alone will not optimize protection of marine biodiversity. More emphasis is needed on better MPA design, durable management and compliance to ensure that MPAs achieve their desired conservation value.
FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2
Preventing SARS-CoV-2 infection by modulating viral host receptors, such as angiotensin-converting enzyme 2 (ACE2) , could represent a new chemoprophylactic approach for COVID-19 that complements vaccination . However, the mechanisms that control the expression of ACE2 remain unclear. Here we show that the farnesoid X receptor (FXR) is a direct regulator of ACE2 transcription in several tissues affected by COVID-19, including the gastrointestinal and respiratory systems. We then use the over-the-counter compound z-guggulsterone and the off-patent drug ursodeoxycholic acid (UDCA) to reduce FXR signalling and downregulate ACE2 in human lung, cholangiocyte and intestinal organoids and in the corresponding tissues in mice and hamsters. We show that the UDCA-mediated downregulation of ACE2 reduces susceptibility to SARS-CoV-2 infection in vitro, in vivo and in human lungs and livers perfused ex situ. Furthermore, we reveal that UDCA reduces the expression of ACE2 in the nasal epithelium in humans. Finally, we identify a correlation between UDCA treatment and positive clinical outcomes after SARS-CoV-2 infection using retrospective registry data, and confirm these findings in an independent validation cohort of recipients of liver transplants. In conclusion, we show that FXR has a role in controlling ACE2 expression and provide evidence that modulation of this pathway could be beneficial for reducing SARS-CoV-2 infection, paving the way for future clinical trials.
Domain-swap polymerization drives the self-assembly of the bacterial flagellar motor
Large protein complexes assemble spontaneously, yet their subunits do not prematurely form unwanted aggregates. This paradox is epitomized in the bacterial flagellar motor, a sophisticated rotary motor and sensory switch consisting of hundreds of subunits. Here we demonstrate that Escherichia coli FliG, one of the earliest-assembling flagellar motor proteins, forms ordered ring structures via domain-swap polymerization, which in other proteins has been associated with uncontrolled and deleterious protein aggregation. Solution structural data, in combination with in vivo biochemical cross-linking experiments and evolutionary covariance analysis, revealed that FliG exists predominantly as a monomer in solution but only as domain-swapped polymers in assembled flagellar motors. We propose a general structural and thermodynamic model for self-assembly, in which a structural template controls assembly and shapes polymer formation into rings.
Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi
Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.
A DNA-based molecular probe for optically reporting cellular traction forces
We developed molecular tension probes (TPs) that report traction forces of adherent cells with high spatial resolution, can in principle be linked to virtually any surface, and obviate monitoring deformations of elastic substrates. TPs consist of DNA hairpins conjugated to fluorophore-quencher pairs that unfold and fluoresce when subjected to specific forces. We applied TPs to reveal that cellular traction forces are heterogeneous within focal adhesions and localized at their distal edges.
Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events
The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species.